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Abstract
Clocks play a special role at the interface of general relativity and quantum 
mechanics. We analyze a clock-interferometry thought experiment and go on 
to theoretically derive and experimentally test a complementarity relation for 
quantum clocks in the context of the gravitational time lag. The effect of time 
lag is simulated using a magnetic gradient. We study this relation in detail and 
discuss its application to various types of quantum clocks.
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1. Introduction

The interface between quantum mechanics (QM) and general relativity (GR) is an ongoing 
fundamental challenge. While cosmology and high-energy physics offer tools used for prob-
ing this interface and seeking hints for a highly sought-after unification, here our tools are 
table-top spatial atomic interferometry and atomic clocks. Indeed, progress in matter-wave 
interferometry [1–3] and atomic clocks [4] has provided a promising platform for new experi-
ments. To unambiguously test the GR notion of proper time in the context of QM, large-scale 
photon interferometry has been proposed [5, 6], as well as a self-interfering atomic clock [7, 8]. 
The latter scheme has recently been realized in a proof-of-principle experiment [9]. Quantum 
complementarity [10] plays a special role at this QM–GR interface, as we show below.

Z Zhou et al

Quantum complementarity of clocks in the context of general relativity

Printed in the UK

185003

CQGRDG

© 2018 IOP Publishing Ltd

35

Class. Quantum Grav.

CQG

1361-6382

10.1088/1361-6382/aad56b

Paper

18

1

12

Classical and Quantum Gravity

IOP

1 Author to whom any correspondence should be addressed.

2018

1361-6382/18/185003+12$33.00 © 2018 IOP Publishing Ltd Printed in the UK

Class. Quantum Grav. 35 (2018) 185003 (12pp) https://doi.org/10.1088/1361-6382/aad56b

https://orcid.org/0000-0002-6252-3048
mailto:rohrlich@bgu.ac.il
https://doi.org/10.1088/1361-6382/aad56b
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6382/aad56b&domain=pdf&date_stamp=2018-08-13
publisher-id
doi
https://doi.org/10.1088/1361-6382/aad56b


2

Our present understanding of complementarity [11–15] for a two-path interferometer is 
summarized by the fundamental inequality V2 + D2 � 1, where V  is interference pattern vis-
ibility and D is distinguishability of the two paths of the interfering particle. This law has been 
verified in numerous experiments [16–23] and elaborated theoretically [24, 25]. In the frame-
work of GR, there is speculation [7] that the inequality may be broken such that V2 + D2 > 1. 
As clock interferometry sensitive to gravitational red shifts may soon be feasible (see [4, 26–
30] and table 2 of [7]), formulating an account of clock complementarity is timely. Here we 
analyze in detail, and test experimentally, a clock complementarity rule for spatial interferom-
eters with internal Hilbert spaces. See also [31] for a closely related analysis. We begin with 
a clock-interferometry thought experiment, suggesting a clock complementarity rule in the 
context of proper time. We obtain it theoretically for an atomic clock with two or more internal 
levels, and verify it empirically in a clock interferometry experiment that includes a simulated 
gravitational red shift.

2. Theory

In the thought experiment, a clock is prepared in a spatial superposition where one wave 
packet is closer to a gravitational source and thus suffers from a stronger time lag (or red 
shift) [7, 9]. We note that it has been theoretically shown that spatial interferometers that are 
sensitive to a proper time lag between the paths are possible [32]. Now, on the one hand, if the 
‘ticking’ rate of the clock depends on its path, then clock time provides which-path informa-
tion and the inequality V2 + D2 � 1, developed in the framework of non-relativistic QM, must 
apply. Yet, on the other hand, gravitational time lags do not arise in non-relativistic quantum 
mechanics, which is not covariant and therefore not consistent with the equivalence principle 
[33]. Hence our treatment of the clock superposition is a semiclassical extension of quantum 
mechanics to include gravitational red shifts.

As a historical precedent, we note that at the sixth Solvay conference in 1930, Einstein 
tried to defeat the uncertainty principle for time and energy by using a clock to measure the 
precise time a photon is released, and a spring scale to weigh the change in energy E (via 
E  =  mc2) of the whole apparatus. Bohr then applied gravitational time dilation to show that 
Einstein’s suggestion could not succeed [34]. Indeed, Bohr’s reply to Einstein already con-
tains the idea for our thought experiment, if we transform the uncertain height of the clock in 
the gravitational potential (during the weighing) into a superposition of the clock at different 
heights. Yet Bohr’s refutation seems, at first sight, mysterious. How could Bohr have applied 
something outside of quantum mechanics to refute a quantum-mechanical argument? Is not 
quantum mechanics by itself, without general relativity, a self-consistent theory? The explana-
tion [35] is simple: Einstein suggested measuring the energy of a photon by weighing it; he 
thus equated the inertial mass m (in the formula for energy) with the gravitational mass (in the 
weight of the photon). But this equation—the equivalence principle—implies the red shift! In 
this work we reverse the logical implication: since we impose a red shift, we must also impose 
the equivalence principle.

According to the equivalence principle, two wave packets traversing an interferometer in a 
gravitational field can equivalently be described as two wave packets traversing the interfer-
ometer and accelerating [36]. That is, we can map the experiment with its gravitational field 
to an equivalent experiment with no gravitational field, but with acceleration; and relativistic 
quantum mechanics fully describes the latter experiment. It follows that the two experiments 
are equivalent; for otherwise, quantum mechanics could distinguish between them, contradict-
ing the equivalence principle. It likewise follows that complementarity, which is expected to 
hold also for relativistic QM, should also apply to wave packets that acquire different red shifts.

Z Zhou et alClass. Quantum Grav. 35 (2018) 185003
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An atomic clock accumulates a quantum phase between two or more internal levels. It 
is convenient to represent clock states as vectors s in the Bloch sphere. In figure  1(a) we 
show two such vectors corresponding to two interfering clock wave packets. The angle θ 
corresponds to the clock preparation (and is common to both wave packets) while the angle 
φ = ω0∆τ  describes the effect of the proper time lapse ∆τ  between the two clock wave pack-
ets, when the clock precesses at rate ω0 [7, 9]. We consider the case where the distinguishabil-
ity arises solely from ∆τ . Because of imperfect clock preparation, ∆τ  may not increase the 
distinguishability D to 1 (and correspondingly would not reduce the visibility to zero), and it is 
useful to characterize the actual distinguishability allowed by the clock by comparing it to the 
distinguishability DI made possible by a clock with an ideal preparation: full distinguishability 
D  =  1 is achieved for ∆φ ≡ φu − φd = π, where u and d denote the upper and lower paths of 
the interferometer, respectively. We do this by introducing a re-scaling factor C that accounts 
for such imperfection, taking D = C · DI.

Figure 1. (a) Bloch sphere of the clock interferometer, where the red (green) vector 
indicates the clock wave packet in the upper (lower) interferometer path. The angle 
2θ between the two Bloch vectors (solid lines) is smaller than the angle π between 
two vectors in a similar interferometer with a perfectly prepared clock (dashed lines). 
(b) Detailed experimental sequence (not to scale). C(θ) is controlled by an RF pulse 
of duration TR. DI(φ) is controlled by a magnetic gradient pulse of length TG. (c) 339 
experimental shots of the interference pattern in a combined plot (one on top of the 
other, no alignment or corrections) when DI(TG) = 0. The visibility is 0.789 ± 0.001. 
The mean of the single-shot visibility is 0.879 ± 0.002. The errors are standard error of 
the mean (SEM).

Z Zhou et alClass. Quantum Grav. 35 (2018) 185003
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Let us consider a clock that is initially prepared as a superposition |θ,φ〉 ≡ cos(θ/2)|1〉+
eiφ sin(θ/2)|2〉 of the two clock energy eigenstates |1〉 and |2〉. This clock state corresponds to 
a Bloch vector s = (sin θ cosφ, sin θ sinφ, cos θ), which is ideally at θ = π/2 on the equator 
of the Bloch sphere, representing an equal superposition of the two energy eigenstates. After 
propagation along the two paths, the two clock wave packets acquire an angular difference 
∆φ = ω0∆τ  due to the proper time lag. The visibility V  of the clock interferometer is equal to 
the overlap |〈u|d〉| ≡ |〈θ,φu|θ,φd〉| between the two states |u〉 and |d〉 of the clock wave packets, 
which have rotated angles φu and φd, respectively, during free propagation at different heights 
in the gravitational field. The angular difference between the two states |u〉 and |d〉 makes them 
distinguishable; the interference visibility is reduced to zero if the overlap between the two 
states is zero, and the distinguishability D ≡

√
1 − |〈u|d〉|2 grows to 1, implying full ‘which-

path’ information. In the case of an ideal preparation, where cos(θ/2) = sin(θ/2) = 1/
√

2, 
the angular separation between the two Bloch vectors su and sd is ∆φ = φu − φd  and the 
overlap is |〈u|d〉| = | cos(∆φ/2)|. In general, we can choose two vectors sa and sb on the 
Bloch sphere, corresponding to two quantum states |a〉 and |b〉, with an angle of separation αab 
between them in the plane that they define. Their overlap is likewise cos(αab/2). It follows 
that the distinguishability is

D2 ≡ 1 − |〈a|b〉|2 = sin2(αab/2) =
1
2
(1 − cosαab) =

1
2
(1 − sa · sb). (1)

In our case, where the latitude θ of the clock states does not change over time, the (real) sca-
lar product of the two Bloch vectors su and sd is su · sd = sin2 θ cos∆φ+ cos2 θ. We use the 
trigonometric equality cos∆φ = 1 − 2 sin2(∆φ/2) and note that DI = | sin(∆φ/2)| is the 
distinguishability of two states in an ideal clock prepared with the Bloch vector pointing to 
the equator, namely with equal populations. Upon substituting su · sd for sa · sb in equation (1) 
we obtain

D2 = sin2 θD2
I , (2)

namely, the distinguishability of the states of the two clock wave packets is a product of the 
distinguishability of two states created by perfect preparation of the clock and propagation 
through the interferometer, scaled by a factor C = sin θ, which varies from C  =  1 for an ideal 
clock to C  =  0 for a non-clock prepared in a given energy eigenstate (at the north or south pole 
of the Bloch sphere). While perfect clock preparation (C  =  1) gives rise to the possibility of 
perfect distinguishability D  =  1 (full orthogonality of the clock states) for a given proper time 
lag ∆τ = π/ω0, in the case of imperfect preparation (C  <  1) the angle between the Bloch 
vectors of the two wave packets is always smaller than αud = π and the maximum possible 
distinguishability is Dmax = C < 1. (C may be thought of as the clock preparation quality or 
‘clockness’.) In the context of a clock interferometer [7, 9], where the distinguishability of 
clock states determines the visibility, the complementarity relation V2 + D2 � 1 can now be 
written as

V2 + (C · DI)
2 � 1. (3)

This is the clock complementarity relation, where DI is the ideal clock distinguishability, 
determined solely by the proper time lag ∆τ  (in the thought experiment).

The complementarity relation in equation (3) was derived here for a typical atomic clock 
based on a two-level system. In this case the ideal distinguishability is DI(∆τ) = | sin(ω0∆τ/2)| 
and the clock preparation quality is C = sin θ = 2

√
P(1 − P), where P and 1  −  P are the 

populations (occupation probabilities) of the two energy eigenstates of the clock. In the more 

Z Zhou et alClass. Quantum Grav. 35 (2018) 185003
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general case—for example, a clock based on an N-level system [spin S = (N − 1)/2]—we 
show in section 5 that equation (3) leads to interesting results in which θ and φ may not be 
disentangled when defining C.

In the next section we demonstrate experimentally the complementarity relation of equa-
tion (3) with a system of two Zeeman levels of an atom in a magnetic field. A vertical magnetic 
field gradient ∂B/∂z takes the place of the gravitational field. The accumulated angular differ-
ence between the two clock wave packets centered at heights zu and zd is φu−φd =∆ωZeemanTG, 
where TG is the gradient pulse duration and ∆ωZeeman = gFµB(∂B/∂z)(zu − zd)/�, µB is the 
Bohr magneton and gF the Landé factor of the hyperfine level F. This clock shift mimics a 
shift ω0∆τ  for a clock in two positions in the gravitational field, where ∆τ ≈ g(zu − zd)T/c2 
and T is the time (in the lab frame) during which the two wave packet centers are separated 
along the axis of gravity.

3. Experimental scheme

We experimentally verify to a high level of likelihood that a two-level clock obeys the gen-
eralized clock complementarity rule, with a magnetic gradient simulating a gravitational red 
shift. The setup used for this study is described in [9], while numerous improvements have 
resulted in a much higher V  in the raw data: figure 1(c) shows very high visibility without any 
normalization (90% as compared with 60% in [9]). The experimental scheme is depicted in 
figure 1(b); it applies the previously demonstrated Stern–Gerlach (SG) matter-wave interfer-
ometer on an atom chip [41] in the following experimental sequence. (For more details, see 
the supplementary material (stacks.iop.org/CQG/35/185003/mmedia).) A BEC of about 104 

87Rb atoms in the state |F, mF〉 = |2, 2〉 is released from a magnetic trap located 90 ± 2 µm 
below the chip surface; next, after 0.9 ms, the SG beam splitter acts on it. It creates a coherent 
spatial superposition of two wave packets in the same spin state (|2, 2〉). A stopping pulse then 
adjusts the relative velocity of the two wave packets so that they have the same momentum. 
With zero relative velocity, the two clock wave packets overlap during time-of-flight (TOF) 
free expansion and create spatial interference fringes. Clocks are prepared by an RF pulse of 
duration TR, which creates a superposition of |2, 2〉 ≡ |2〉 and |2, 1〉 ≡ |1〉 states. The pulses are 
applied under a strong homogeneous magnetic field (36.7 G) in order to push the transition to 
|2, 0〉 out of resonance via the nonlinear Zeeman effect, thus forming a pure two-level system. 
As the Rabi frequency ΩR is constant, varying TR will effectively change the Bloch vector’s 
polar angle θ in the Bloch sphere (figure 1(a)), e.g. when TR = 0 μs, there is no rotation and 
the Bloch vector stays at the north pole, and when TR = 10 μs, the Bloch vector is rotated 
onto the equator and a proper clock is prepared in the state (|2〉+ |1〉)/

√
2. Then an additional 

magnetic gradient pulse of duration TG is applied in order to change the relative ‘tick’ rate of 
the superposed clock wave packets, thus determining a relative rotation φ on the equator of 
Bloch sphere (figure 1(a)). This synthetic red shift introduces a posteriori which-path infor-
mation (WPI) by creating entanglement between the path and a WPI marker, in contrast to 
the a priori WPI, which involves the preparation of an unbalanced interferometer such that 
the particle flux along the two paths differs. An image is taken (in the xz plane) after the wave 
packets expand and overlap. (The absorption imaging is insensitive to the Zeeman states, i.e. 
|1〉 and |2〉 count equally.) Because two BEC wave packets are always expected to yield fringes 
when they overlap, many experimental cycles are required in order to prove phase stability or, 
in other words, coherent splitting of the clock.

Let us note that it is not enough to experimentally simulate the thought experiment by plac-
ing a clock in a spatial superposition, and creating a synthetic red shift with some force field. 

Z Zhou et alClass. Quantum Grav. 35 (2018) 185003
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To faithfully simulate the thought experiment one must make sure that there is no breakup 
of the clock due to the applied force field. This may be viewed as a mere technical condition 
for the operation of a clock, but in fact the ‘no clock breakup’ is a fundamental feature of 
the thought experiment that must be imitated by any experimental simulation. Specifically, 
there is no breakup of a clock wave packet in the gravitational field. Consider a single wave 
packet centered at a point z0 and let τ(z0) be a proper time lapse there. While two clock 
levels are indeed accelerated in the gravitational field to different momenta pj = mjgτ(z0) 
(where the mass difference m2 − m1 = �ω0/c2 is due to the difference �ω0 in their ener-
gies), the corresponding velocities vj = pj/mj = gτ(z0) do not depend on the specific clock 
level. The Galilean law of falling masses, stating that gravitational acceleration is independ-
ent of mass, holds in general relativity and insures that clock breakup will not occur in a 
gravitational field. Similarly, the clock breakup effect in our experiment is negligible rela-
tive to the difference of the clock angle between the two clock wave packets. A clock wave 
packet ψ0(z)(|1〉+ |2〉) in a magnetic field gradient undergoes not only a rotation of the clock 
|1〉+ |2〉 → |1〉e−iω1TG + |2〉e−iω2TG, where ω1 and ω2 are the magnetic potentials for the two 
levels at z0, but also a differential momentum. While the differential clock rotation is shown 
to span a large range of clock angles allowing the two clock states to be fully distinguish-
able (DI = 1), the momentum separation between the two states of the same clock, which is 
given by ∆p = �(∂ω1/∂z − ∂ω2/∂z)TG, is much smaller than the momentum distribution of 
each wave packet (allowing the observation of many spatial fringes [9]). These conditions are 
automatically fulfilled in our experiment when the separation between the two wave packets 
is larger than the wave packet width. It follows that our demonstration of the effect of gravita-
tional red shift on clock distinguishability is valid.

4. Verifying clock complementarity

Each clock is a superposition of two Zeeman sublevels |1〉 ≡ |2, 1〉 and |2〉 ≡ |2, 2〉, with coef-
ficients that depend on θ and φ. The RF pulse (duration TR) controls the value of C = sin θ, 
while the magnetic gradient pulse (duration TG) controls the value of DI = sin(φ/2). The 
latter creates an effective red shift, namely a differential clock ‘tick’ rate, by inducing a differ-
ential Zeeman splitting ∆ω such that φ = ∆ω · TG. Finally V  is measured from the spatial 
interference pattern (figure 1(c)). We measure C2  =  4P(1  −  P) independently in a separate 
experiment by measuring P after the clock is initialized, and we evaluate DI independently 
by measuring the relative phases in two single-state interferometers, one for each of the two 
clock states.

The independent measurements of V , C and DI are presented in figure  2. As noted, 
C = sin θ = 2

√
P(1 − P), and in order to establish the value of C we need to measure the 

population transfer from the mF  =  2 state to the mF  =  1 state. In figure  2(a) we show the 
population transfer measured by Stern–Gerlach splitting of the different spin states and atom 
counting, and figure 2(b) shows the resulting value of C2. As expected, C2 oscillates between 
0 and 1, corresponding to the population transfer. In figure 2(c), we scan TG and measure the 
optimal clock (C  =  1) interference visibility. The result is fitted with | cos(φ/2)|, where φ 
represents the clock relative rotation. In figures 2((d)–(f)) DI is measured by two single-state 
interferometers (mF  =  2 and mF  =  1). The difference in phase between these two interfero-
metric fringe patterns is equivalent to the relative rotation φ between the upper and lower 
clock wave packets, from which DI is directly calculated as | sin(φ/2)|. The measured relations 
among the population transfer P, the parameter C2 and the visibility V  appear in greater detail 
in figure 3, for the case of DI equal to 1.

Z Zhou et alClass. Quantum Grav. 35 (2018) 185003
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In figure 4(a) we present the clock complementarity relation V2 + (C · DI)
2 for four values 

of C when DI is scanned. Figure 4(b) presents the clock complementarity for four values of DI 
when C is scanned. With V , C and DI measured independently, figure 4 demonstrates that the 
clock complementarity rule is sound.

5. Multilevel clocks

To achieve an atomic clock with a better time precision it is possible to choose a pair of energy 
eigenstates with a larger energy spacing �ω0. In the context of our Zeeman level clock it is 
possible, for example, to prepare the system as a superposition of the two extreme Zeeman 
levels mF = ±2 of the F  =  2 manifold and use this system as a two-level clock with rotation 
frequency 2Fω0. (See [42] for a possible realization.) The discussion in section 2 is valid for 
this system exactly in the same way.

An example of a multilevel clock where a few or many levels are occupied simultaneously 
during the clock evolution provides a model for examining the transition to the classical clock 
limit where the clock hand moves over a continuum of distinguishable times. So far, a two-
level clock was prepared by using a Rabi rotation that places the S  =  1/2 Bloch vector at an 
angle θ from the z axis of the Bloch sphere. Let us consider an S  >  1/2 system prepared in 
a similar way. (For an example of such a preparation see [43]; for a possible realization of a 
very large S see [44].) Figures 5((a) and (b)) show an S  =  8 clock interferometer on the Bloch 
sphere. In a spin-S system (with N  =  2S  +  1 levels and equal energy spacing), one may rotate 
the state along the θ direction while free evolution rotates the state along the φ direction. As 
in the spin-1/2 system, the overlap between two states |θa,φa〉 and |θb,φb〉, representing two 
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Figure 2. The independent measurement of V , C and DI: ((a) and (b)) C2  =  4P(1  −  P) is 
measured independently in a separate experiment by measuring the population transfer 
P after the clock is prepared by an RF pulse of duration TR; (c) the visibility of an 
ideal clock (C  =  1) interference pattern versus TG, which induces distinguishability; the 
result is fitted to | cos(φ/2)|. ((d)–(f)) DI is evaluated independently by measuring the 
relative angle in two single-state interferometers each containing one of the two clock 
states, φ1 for mF  =  1 and φ2 for mF  =  2, and then by calculating DI = | sin(φ2 − φ1)/2|. 
The errors are standard error of the mean (SEM) and are at times not visible because of 
their small magnitude.
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coherent states obtained by such rotations starting from the extreme energy eigenstate mS  =  S, 
is determined by the angle αab between the two Bloch vectors sa and sb corresponding to the 
two quantum states. For example, consider the overlap between the two states |θa,φa〉 = |0, 0〉 
(the extreme energy eigenstate on the north pole) and |θ,φ〉 obtained by a Rabi rotation of the 
state |0, 0〉 with an angle θ. This state has the form

|θ,φ〉 =
S∑

m=−S

cosS+m(θ/2) sinS−m(θ/2)

√(
2S

S + m

)
e−imφ|S, m〉, (4)

where |S, m〉 are the spin eigenstates and 
(

2S
S + m

)
 are binomial coefficients for choosing 

S  +  m out of 2S  +  1. It follows that the overlap integral is given by |〈0, 0|θ,φ〉| = cos2S(θ/2). 
As rotations around the Bloch sphere are unitary operations and do not change the overlap 
between two states transformed under the same operation, and as can be verified directly 

Figure 3. (a) Clock preparation, showing the population transfer P versus TR. (b) In 
blue, the measured C2 versus TR, when ∆φ = π  (and DI = 1 with an uncertainty of 
1%), as well as (dashed line) the calculated C2  =  4P(1  −  P), taking P from (a). For 
reference, we also show (in red) the measured V  versus TR, as well as (dashed line), the 
calculated visibility V = | cos θ|Vmax = |1 − 2P|Vmax (again, taking P from (a)), where 
Vmax = 0.9 is our maximal visibility limited by optical resolution, etc. The figure shows 
the complementary between C2 and V  when DI equals 1.

Z Zhou et alClass. Quantum Grav. 35 (2018) 185003
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from the above equation, we can generalize this result to any two coherent states on the Bloch 
sphere, such that

|〈θa,φa|θb,φb〉| = cos2S(αab/2), (5)

where αab is the angle between the two Bloch vectors such that cosαab = sa · sb. By using 
some trigonometric equations we conclude that for two Bloch vectors prepared at the same 
latitude θ the distinguishability is

D2 = 1 −
[

1
2
(1 + su · sd)

]2S

= 1 − [1 − sin2 θ sin2(∆φ/2)]2S. (6)

For S  =  1/2 this leads to the same expression as in equations (1) and (2). The ideal distinguish-
ability is D2

I = 1 − cos4S(∆φ/2) (conforming to the two-level system result for S  =  1/2). 
This implies that the ‘clockness’ C should be

C2 ≡ D2

D2
I
=

1 − [1 − sin2 θ sin2(∆φ/2)]2S

1 − cos4S(∆φ/2)
. (7)

Figure 4. The value of V2
N + (C · DI)

2, where all three parameters are measured 
independently: (a) for four values of C when DI is scanned, and (b) for four values 
of DI when C is scanned. VN is the normalized visibility: each value of the visibility 
is an average of the single-shot visibility from several experimental cycles, and the 
error bars represent the standard error of the mean (SEM) in this sub-sample. For error 
bars corresponding to standard deviation (SD) we multiply by 

√
n, where n  =  6 is the 

number of data points. This average is normalized to the visibility of the single-state 
interferometer (i.e. without an initialization of a clock) to account for experimental 
imperfections. In figure 4(a), the value at TG near 22 μs originates from a relatively 
large experimental error in measuring the interferometric phase, as can be seen in 
figures 2((d)–(f)). However, these values are still within one standard deviation of the 
value 1.
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In the limit of a very short time lag ∆φ → 0, the ‘clockness’ becomes C → sin θ, the same 
as for spin-1/2 and independent of the spin. However, for general proper time lags of the two 
clocks, C becomes dependent both on the spin S and the angle difference ∆φ. The value of 
C as a function of ∆φ is shown in figure 5(c). For large values of the spin S and large proper 
time differences, the distinguishability is no longer sensitive to the clock preparation angle, 
as the clock states are represented by a narrow distribution of angles on the Bloch sphere and 
therefore two states with large ∆φ are well separated even if the preparation angle is not ideal.

Finally, we can apply the clock complementarity relation in equation (3) to a single-state 
spatial interferometer, e.g. the Compton clock for which C  =  0; [37–40]; but C  =  0 does not 
correspond to a clock in the usual sense of an internal state space. What is unique to C  >  0 
clock interferometry is the reduced V  due to different clock readings along the paths, render-
ing the paths distinguishable [7, 9]. An additional implication of equations (1) and (2) is that 
V2 + D2 > 1 [7] requires either V �= |〈su|sd〉| or new rules for scalar products in quantum 
mechanics.

6. Conclusion

In summary, we have theoretically obtained and experimentally confirmed a clock comple-
mentarity relation, V2 + (C · DI)

2 = 1, for clock wave packets superposed on two paths 
through an interferometer. Here V  is the visibility of their interference pattern, C is a measure 
of the ‘preparation quality’ of the clock, and DI is the distinguishability of an ideally prepared 
clock. We emphasize that our experiment measures V , C, DI independently. While this rela-
tion is specific to clock complementarity, it is unusual in linking non-relativistic quantum 

Figure 5. Distinguishability for coherent states of spin S � 1/2. (a) The Bloch sphere 
of S  =  8 showing the angular distribution of a superposition of states |θ,φ〉 = |π/2, 0〉 
and |π/2,−π/2〉 with almost full distinguishability. (b) A similar superposition for a 
non-ideal clock prepared at θ = π/3; the two states show a considerable overlap. (c) 
‘Clockness’ C for a preparation angle θ = π/4 as a function of the phase difference 
∆φ and different spin values S. For ∆φ → 0 C → sin θ is independent of spin, but for 
large ∆φ the ‘clockness’ is large for large spins as the angular distribution on the Bloch 
sphere is narrow, implying high distinguishability regardless of the preparation angle.

Z Zhou et alClass. Quantum Grav. 35 (2018) 185003
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mechanics with general relativity. A direct test of this complementarity relation will come 
when DI reflects the gravitational red shift between two paths which traverse different heights.
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